Progress Toward Restoring the Everglades: The Seventh Biennial Review, 2018

A CERP Mid-Course Assessment

Wendy Graham, Ph. D Director University of Florida Water Institute CISRERP Committee Member, 2016-2018

Comprehensive Everglades Restoration Plan (CERP)

- The largest of several South Florida restoration initiatives
- Designed to "get the water right"
- >40 major projects and 68 project components
- Joint federal-state program, launched in 2000, estimated then at \$8 billion and 30 years, recent (2015) estimates ~\$16 billion

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Since CERP launched in 2000

- New understanding of "pre-drainage hydrology"
- New understanding of the importance of interannual, multidecadal climate cycles for S. Florida hydrology
- Consensus regarding expected increases in sea level rise and temperature for the region
- Uncertainty regarding long-term precipitation trends
- Florida's population has grown by ~5 million, 5 million more expected by 2040

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Image sources: Leon Hernandez, Flickr Commons Robert Duyos/Sun Sentinel SoFlaShare

Questions

- Is restoration of "pre-drainage flows" feasible in the contemporary climate? Future climate?
- To what extent can restoration of flow mitigate salinity incursion related to sealevel rise and associated peat collapse?

- To what extent can restoration of flow facilitate a landward migration of coastal mangroves to counteract the effects of sea-level rise?
- Are current estuary salinity envelope performance measures valid for 2050 sea levels?
- How can CERP improve the resilience of the Greater Everglades System to future conditions?
- Are new or additional performance measures needed?

Source: (top) Brendan McGovern (bottom) Chauncey Davis, Flickr Commons The National Academies of SCIENCES • ENGINEERING • MEDICINE

Since CERP launched in 2000

- Reduced estimate of the feasible number of ASR wells for interannual storage
- Planning is largely complete for above ground storage N, S, E and W of lake, with significant reductions over original plan
- Feasibility of in-ground reservoirs in lake belt region is unproven
- System-wide aggregated impact of these anticipated changes has not been assessed.

	Vellew Beek	Lindated Storage
		Opdated Storage
	Storage Capacity	Capacity Acre-
STORAGE COMPONENT	Acre-Feet	Feet
Existing System Storage		
Lake Okeechobee	3,817,000ª	3,253,000ª
Water Conservation Areas	1,882,000	1,882,000
Total lake/WCA storage	5,699,000	5,135,000
Above-ground Reservoirs		
North Storage Reservoir (Kissimmee)	200,000	43,000 ^b
Taylor Creek/Nubbin Slough	50,000	0 ^b
Caloosahatchee (C-43) Basin	160,000	170,000
C-44 Reservoir	40,000	50,600
Other Upper East Coast Storage ^c	349,000	109,400 ^c
EAA Reservoirs	360,000	300,000 ^{d,e}
Central Palm Beach Reservoir	19,920	TBD
Site 1 Reservoir	14,760	O ^f
Bird Drive Reservoir	11,600	Og
Acme Basin	4,950	0 ^h
Seminole Tribe Big Cypress	7,440	TBD
Total above-ground reservoir storage	1,217,670	
Projects planned to date	1,190,310	673,000
Potential storage in projects not yet	27,360	
planned, or planning not finalized:		
In-ground Reservoirs		
North Lake Belt	90,000	Feasibility unproven
Central Lake Belt	187,200	Feasibility unproven
L-8 Basin	48,000	45,000 ^e
Total in-ground reservoir storage	325,200	
Projects planned to date	48,000	45,000 ^e
Potential storage in projects not yet	277,200	
planned, or planning not finalized:		
ASR Wells		
All CERP wells	1,637,000 ⁱ	TBD

Context for Mid-course Assessment

- Everglades of 2050 and beyond will differ from what was originally envisioned when CERP was developed
- A forward-looking program-level analysis that incorporates the latest socioeconomic, scientific, and engineering information, while considering uncertainties about future conditions is recommended

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Image sources: Obeysekera et al, 2015 Obeysekera et al, 2017

Mid-Course Assessment Should

- Be forward- rather than backward-looking. What does a healthy S. Florida ecosystem that is resilient to 2050 stresses look like?
- Include integrated analysis of all major CERP and non-CERP projects that are currently planned, under construction, completed.
- Leverage advances in hydrologic, water quality and ecologic models
- Incorporate a suite of future climate, sea-level and socioeconomic projections in addition to contemporary conditions

Mid-Course Assessment Could Evaluate

- Future without any CERP projects
- Future with CERP projects as completed today
- Future with all authorized CERP projects
- Future with authorized CERP projects and CERP projects in planning
- Future with authorized and planned CERP projects plus potential alternative Lake Okeechobee regulation schedules
- Expected performance of the above over a suite of future scenarios to identify whether they are robust and resilient over a wide range of possible future conditions

Mid Course Assessment Would

- Demonstrate the combined performance under contemporary climate of all projects that are currently planned, under construction, completed
- Investigate the resilience and robustness of Everglades restoration efforts to climate change and sea level rise
- Inform robust decisions about planning, sequencing, adaptive management

Source: Brendan McGovern, ENP Cayobo, Flickr Commons, Hurricane Irma

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Carpe Diem!

- The time is right! Current authorized and planned projects will require decades to construct at current funding levels. This should not slow down restoration efforts.
- The expertise exists! SFWMD has begun to conduct these types of analyses for planning and management projects outside of CERP
- The cost is small! Even a \$10 million investment would likely represent less than 5% of the total cost of CERP

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Questions?

Supporting Sound Decision Making for a Future Everglades

- Requires a science program that can bring the latest information and tools into CERP planning and implementation
 - Research needed to understand systemwide issues affected by future change, including peat collapse, saltwater intrusion, invasive species
 - May be best championed by an independent Everglades Lead Scientist empowered to coordinate and promote needed scientific advances